

Population Ecology Chapter 5

Describing Populations

Ecologists study populations by examining:

(Leave room to add notes under each)

- geographic range-place a population lives
- growth rate- how quickly population increases or decreases
- density-number of individuals in an area
- distribution-how individuals are spaced out
- age structure-describes ages and genders of population

Geographic Ranges

The range of a species depends on biotic and abiotic conditions found in the area.

Population Growth Rate

- The population growth rate (PGR) explains how fast a given population grows.
- Birthrate (natality), death rate, immigration and emigration affect PGR

Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Home Resources 4

Exponential Growth Model

- Exponential growth occurs when the resources are unlimited.
- J shaped curve

growth.

• All populations grow To a some limiting factor slows the population's

What is happening during the lag phase?

Logistic Growth Model

 The population's growth slows or stops following exponential growth, at the population's carrying capacity.

Carrying Capacity

- The maximum number of individuals in a species that an environment can support for the long term is the carrying capacity.
- Carrying capacity is limited by the energy, water, oxygen, and nutrients available.

- The rate strategy, or r-strategy, is an adaptation for living in an environment where fluctuation in biotic or abiotic factors occur.
- An r-strategist is generally a small organism.
- Short life span
- Produces many offspring

ADD: r/k strategist chart to EOC NB

	<i>r</i> Unstable environment, density independent	Stable environment, density dependent interactions
Organism size	Small	Large
Energy used to make each individual	Low	High
# Offspring produced	Many	Few
Timing of maturation	Early	Late (with much parental care)
Life expectancy	Short	Long
Lifetime reproductive events	One	More than one
Survivorship curve	Type III	Type I or II

- The carrying-capacity strategy, or k-strategy, is an adaptation for living in stable environments.
- A k-strategist is generally a larger organism.
- Long life span
- Produces few offspring

A population stops increasing when the number of births is less than the number of deaths or when emigration exceeds immigration.

Survivorship Curves

The number of organisms per unit area

Population Distribution

- Dispersion is the pattern of spacing of a population:
 - Random-individuals space unevenly
 - Uniform-individuals spaced evenly
 - Clumped-individuals are grouped together

Section 2: Population Dynamics

Population-Limiting Factors

There are two categories of limiting factors density-independent factors and densitydependent factors.

Density-Independent Factors

- Any factor in the environment that does not depend on the number of members in a population per unit area is a densityindependent factor.
 - Weather events
 - Fire
 - Human alterations of the landscape
 - Air, land, and water pollution

Density-Dependent Factors

- Any factor in the environment that depends on the number of members in a population per unit area is a density-dependent factor.
 - Biotic factors
 - Disease
 - Competition
 - Parasites

The Wolves of Isle Royale, see TB pg 154 Videoclip

Human Population Growth

The study of human population size, density, distribution, movement, and birth and death rates is demography.

Human Population Growth Rate

 Although the human population is still growing, the rate of its growth has slowed.

Trends in Human Population Growth

- Population trends can be altered by events such as disease and war.
- Human population

Population Growth Rates of Countries Population growth Country Location rate (percent) Afghanistan 4.77 Afghanistan Germany Indonesia Nigeria Brazil United States Honduras Kenya Brazil 1.06 Bulgaria Bulgaria -0.890.0 Germany Honduras 2.16 India 1.40 Indonesia 1.45 Kenya 2.56 Niger 2.63 Nigeria 2.37 United States 0.92

growth is not the same in all countries.

Zero Population Growth

- Zero population growth (ZPG) occurs when the birthrate equals the death rate.
- The age structure eventually should be more balanced with numbers at pre-reproductive, reproductive, and post-reproductive ages being approximately equal.

Age Structure

 A population's age structure is the number of males and females in each of three age groups:

pre-reproductive stage, reproductive stage, and post-reproductive stage.

Technological Advances

- For thousands of years, environmental conditions kept the size of the human population at a relatively constant number below the environment's carrying capacity.
- Humans have learned to alter the environment in ways that appear to have changed its carrying capacity.

Human Carrying Capacity

- Scientists are concerned about the human population reaching or exceeding the carrying capacity.
- An important factor is the amount of resources from the biosphere that are used by each person.